Asymptote can draw standard shapes (spheres, cylinders, cubes, etc) which you can then scale, rotate, and shift to create many other shapes. \documentclass[border=10pt]{standalone} \usepackage[inline]{asymptote} \begin{document} \begin{asy} import three; settings.render = 0; //Setup View size(200); currentprojection=orthographic(5,4,2); //Draw Axes pen thickblack =… Continue Reading →
\documentclass[border=10pt]{standalone} \usepackage[inline]{asymptote} \begin{document} \begin{asy} // settings.outformat=”pdf”; // settings.prc = false; // settings.render = 16; settings.render = 0; import three; import graph; size(8cm,0); currentprojection = orthographic(2,0,10, up=Y); draw(-2X–2X,arrow=Arrow3(),L=Label(“$X$”, position=EndPoint)); draw(-2Y–2Y,arrow=Arrow3(),L=Label(“$U$”, position=EndPoint)); draw(-2Z–2Z); label(“$w \to \infty$”,(2,1,0)); draw((0.5,-1,1)–(0.7,-0.2,1),arrow=Arrow3(size=5bp),L=Label(“$\Pi_w$”, position=BeginPoint)); draw((1.5,-1.3,0)–(1.3,-0.8,0),arrow=Arrow3(size=5bp),L=Label(“$X+U = L \mathrm{e}^{w/L}$”,… Continue Reading →
\documentclass[border=10pt]{standalone} \usepackage[inline]{asymptote} \begin{document} \begin{asy} settings.render=0; unitsize(1cm); import three; draw(Label(“$x$”,EndPoint,align=SW),O–2.5X,Arrow3); draw(Label(“$y$”,EndPoint),O–4Y,Arrow3); draw(Label(“$z$”,EndPoint),O–3Z,Arrow3); triple A=(1,sqrt(3),0), B=2Z; path3 p=plane(A,B); draw(surface(p),magenta+opacity(.2)); draw(p,magenta+.6pt); label(“$x\sqrt{3} -y =0$”,A+B,NE,magenta); draw(Label(scale(.6)*”$1$”,EndPoint,align=NW,black),A–(A.x,0,0),gray+dashed); draw(Label(scale(.6)*”$\sqrt{3}$”,EndPoint,align=.4dir(60),black),A–(0,A.y,0),gray+dashed); \end{asy} \end{document} Source: TeX.SE Author: Black Mild (License) See also: Original Source
\documentclass[border=10pt]{standalone} \usepackage[inline]{asymptote} \begin{document} \begin{asy} settings.render=0; import graph3; currentprojection=orthographic(2,2,.5,zoom=.9); unitsize(1cm); pen plane1=red, plane2=cyan, plane3=blue,pcone=yellow; real a=1.8,h=3; surface c=scale(a,a,h)*shift(0,0,-1)*unitcone; draw(zscale3(-1)*c,pcone+opacity(.5)); draw(c,pcone+opacity(.3)); real b=2.2; path3 g=scale3(b/a)*unitcircle3; draw(shift(0,0,b)*g,plane1+1pt); draw(shift(0,0,-b)*g,plane3+1pt); surface pl=shift(-3,-4,0)*scale(6,8,0)*unitplane; draw(shift(0,0,b)*pl,plane1+opacity(.3)); draw(pl,plane2+opacity(.3)); draw(shift(0,0,-b)*pl,plane3+opacity(.3)); draw(Label(“$\eta_1$”,EndPoint),O–4*X,Arrow3); draw(Label(“$\eta_2$”,EndPoint),O–5*Y,Arrow3); draw(Label(“$\eta_3$”,EndPoint,align=E),-3Z–4*Z,Arrow3); \end{asy} \end{document} Source: TeX.SE Author: Black Mild… Continue Reading →
\documentclass[border=10pt]{standalone} \usepackage{asymptote} \begin{document} \begin{asy}[inline=true] import math; import graph; struct construct{ pair[] loc; string[] name; pair[] namePos; guide[] straight; pen[] straightPen; guide[] circ; pen[] circPen; pen thinpen; bool pqr(pair p, pair q, pair r){ return (p.x*(q.y-r.y)+(r.y-p.y)*q.x+r.x*(p.y-q.y))>0; }; pair lastpoint(){ assert(loc.length>0); return… Continue Reading →
\documentclass[border=10pt]{standalone} \usepackage{asymptote} \begin{document} \begin{asy}[inline=true] settings.tex=”pdflatex”; import graph; import math; import palette; size(12cm); import fontsize;defaultpen(fontsize(8pt)); real xmin=-3.6, xmax=5; real ymax=1.6, ymin=-ymax; real dxmin=0, dxmax=0.1; real dymin=0.1, dymax=dymin; xaxis(“$x$”,xmin-dxmin,xmax+dxmax,RightTicks(Step=1,step=0.2,OmitTick(0,2.2)),above=true); yaxis(“$y$”,ymin-dymin,ymax+dymax,LeftTicks (Step=1,step=0.2,OmitTick(0,1.4)),above=true); real[] n={-3, -2, -1, 0, 1, 2, 3}; pen[] p=Gradient(n.length, blue,red);… Continue Reading →
\documentclass[border=10pt]{standalone} \usepackage{asymptote} \begin{document} \begin{asy}[inline=true] import graph; import contour; import palette; defaultpen(fontsize(10pt)); size(14cm,8cm,IgnoreAspect); pair xyMin=(1,74); pair xyMax=(3,86); real f(real x, real y) {return -2.051^3*1000/(2*3.1415*(2.99*10^2)^2)/(x^2*Cos(y)^2);} int N=200; int Levels=16; defaultpen(1bp); bounds range=bounds(-3,-0.10); // min(f(x,y)), max(f(x,y)) real[] Cvals=uniform(range.min,range.max,Levels); guide[][] g=contour(f,xyMin,xyMax,Cvals,N,operator –); pen[] Palette=Gradient(Levels,rgb(0.3,0.06,0.5),rgb(0.9,0.9,0.85));… Continue Reading →
\documentclass[border=10pt]{standalone} \usepackage{asymptote} \begin{document} \begin{asy}[width=\the\linewidth,inline=true] settings.outformat=”pdf”; settings.render=0; settings.prc=false; size(7cm); import graph; import patterns; import fontsize; defaultpen(fontsize(9pt)); texpreamble(“\usepackage{lmodern}”); pen hatchPen=orange+0.4bp; pen borderPen=deepblue+1bp; pen arrPen=red+1bp; pen areaBG=palegreen; pair[] dots={ (25,280), (60,280), (25,140), }; pair star=(60,137); guide[] arrows={(25,265)–(25,160), (60,265){dir(-90)}..(60,200)..(40,160), }; guide[] markedArrows={ (150,280)–(200,280), (150,140)–(200,140),… Continue Reading →
\documentclass[border=10pt]{standalone} \usepackage{asymptote} \begin{document} \begin{asy}[width=\the\linewidth,inline=true] settings.outformat=”pdf”; settings.render=0; settings.prc=false; import solids; import graph3; usepackage(“newtxmath”); size(200,400); real r=3; real h=2.5pi; currentprojection=orthographic(8,2,4); revolution R=cylinder(O,r,h); // The circular helix triple f(real t){ real a=r*cos(t); real b=r*sin(t); real c=t; return (a,b,c); } real k=7; path3 plane=(k,k,0)–(k,-k,0)–(-k,-k,0)–(-k,k,0)–cycle;… Continue Reading →
\documentclass[border=10pt]{standalone} \usepackage{asymptote} \begin{document} \begin{asy}[width=\the\linewidth,inline=true] settings.render=8; settings.prc=false; size(8cm); import three; import graph; import fontsize; defaultpen(fontsize(9pt)); pen[] fillpen={ red, orange, yellow, green, lightblue, blue, darkblue }; real xmin=0, xmax=20, ymin=0, ymax=20; xaxis(xmin,xmax,RightTicks(Step=10,step=5)); yaxis(ymin,ymax, LeftTicks(Step=10,step=5)); real ra(real t, real a){return 3*a*sin(t)*cos(t)/(sin(t)^3+cos(t)^3);}; real r(real);… Continue Reading →
Drawing a radar-like diagram. Text can be added with the function putText; the legend is written next to the data sector. \documentclass[border=10pt]{standalone} \usepackage[inline]{asymptote} \begin{asydef} struct RadarPlot{ real[] data; string[] Legend; pen[] Pens; pen gridPen; pen axisPen; pen labelPen; pen legendPen;… Continue Reading →
\documentclass[border=10pt]{standalone} \usepackage[inline]{asymptote} \begin{document} \begin{asy}[width=\the\linewidth,inline=true] import graph3; currentprojection=orthographic(-5,-4,2,center=true); guide3 sphere_x_cyl(real a, real r, real R, int n=10){ // return a closed curve of the Sphere–cylinder intersection (top part) // only for the case when a cylinder is completely inside // except… Continue Reading →
The boundary of a Reuleaux triangle is a constant width curve based on an equilateral triangle. All points on a side are equidistant from the opposite vertex. (Wikipedia) \documentclass[border=10pt]{standalone} \usepackage[inline]{asymptote} \begin{document} \begin{asy}[width=\the\linewidth,inline=true] path triangle = scale(1/2)*polygon(3); pair a = point(triangle,… Continue Reading →
\documentclass[border=10pt]{standalone} \usepackage[inline]{asymptote} \begin{document} \begin{asy}[width=\the\linewidth,inline=true] pen lineAb=black+3pt; pen lineAt=white+1.2pt; pen lineB=dashed+darkblue+1.3pt; pen circA=lightyellow; pen circB=darkblue; pen rimA=red; pen rimB=blue; pen shade=springgreen; guide circ=unitcircle; real d=5; pair a,b,c,u; a=(0,-d); b=(d,-d); c=(d,0); u=1.618b; guide ga=shift(a.x,a.y)*circ; guide gc=shift(c.x,c.y)*circ; guide garc=a{dir(-45)}..u..{dir(135)}c; pair xa=intersectionpoint(ga,c–a); pair xc=intersectionpoint(gc,a–c);… Continue Reading →
This example plots a spiral of roots. \documentclass[border=10pt]{standalone} \usepackage[inline]{asymptote} \begin{document} \begin{asydef} unitsize(2cm); import fontsize; defaultpen(fontsize(9pt)); pen linepen=deepblue+0.8bp; pen labelpen=black; pen markpen=gray+0.6bp; void spiralOfRoots(int n){ assert(n>0); real w=0.15; pair O=0E,a=E,b; pair p,q,r; for(int i=1;i<=n;++i){ draw(O–a,linepen); label(“$\sqrt{“+string(i)+”}$”,O–a,O,labelpen,UnFill); b=a+dir(degrees(a)+90); draw(a–b,linepen); p= w*dir(b-a); r=-w*dir(a);… Continue Reading →
This example plots a lattice of points on the surface of a torus. \documentclass[border=10pt]{standalone} \usepackage[inline]{asymptote} \begin{document} \begin{asy}[width=\the\linewidth,inline=true] settings.outformat=”pdf”; settings.render=0; settings.prc=false; import graph3; pen surfPen=rgb(1,0.7,0); pen xarcPen=deepblue+0.7bp; pen yarcPen=deepred+0.7bp; currentprojection=perspective(5,4,4); real R=2; real a=1; triple fs(pair t) { return ((R+a*Cos(t.y))*Cos(t.x),(R+a*Cos(t.y))*Sin(t.x),a*Sin(t.y)); }… Continue Reading →
This solution illustrates (a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3. \documentclass[border=10pt]{standalone} \usepackage[inline]{asymptote} \begin{document} \begin{asy}[width=\the\linewidth,inline=true] settings.outformat=”pdf”; settings.render=0; settings.prc=false; unitsize(1cm); import three; currentprojection=orthographic(3,2,1,center=true,zoom=.8); //currentprojection=orthographic(0,10,0,zoom=.8); light White=light(new pen[] {rgb(0.38,0.38,0.45),rgb(0.6,0.6,0.67), rgb(0.5,0.5,0.57)},specularfactor=3, new triple[] {(5,5,5),(0,5,5),(-0.5,0,2)}); currentlight=White; real a=3.2, b=1.5; path3[] p=unitbox; surface q=unitcube;… Continue Reading →
A fish for fun \documentclass[border=10pt]{standalone} \usepackage[inline]{asymptote} \begin{document} \begin{asy}[width=\the\linewidth,inline=true] settings.outformat=”pdf”; settings.render=0; settings.prc=false; real w=600,h=400; size(h,w); pen bgPen=rgb(0,0.647,1), bodyPen=rgb(0.847,0.196,0.133), whitePen=rgb(1,1,1), eyePen=rgb(0.004,0.18,1)+opacity(0.01), mouthPen=rgb(1,1,1), scalesPen=rgb(0.98,1,0)+12pt; pair[][] bBody={ {(454,270),(436,252),(443,251),},{(433,269),(424,286),(398,322),}, {(361,352),(324,382),(276,405),},{(218,394),(160,382),(92,334),}, {(55,295),(18,256),(12,226),},{(13,187),(14,149),(21,102),}, {(65,66),(109,30),(189,3),},{(243,2),(296,1),(322,24),}, {(348,46),(374,68),(398,89),},{(414,109),(430,129),(437,149),}, {(450,143),(463,137),(481,105),},{(504,80),(526,55),(552,37),}, {(568,40),(585,43),(592,66),},{(584,97),(576,128),(553,166),}, {(542,181),(531,197),(531,189),},{(543,204),(555,218),(579,256),}, {(585,286),(591,316),(578,339),},{(571,349),(563,359),(561,356),}, {(538,338),(515,320),(472,287),}, }; pair[][] bWhite={ {(223,261),(227,278),(209,303),},{(192,312),(174,321),(156,315),}, {(141,304),(127,293),(115,276),},{(116,260),(118,244),(132,228),}, {(143,222),(155,215),(162,220),},{(179,227),(195,234),(220,244),}, };… Continue Reading →
The Möbius strip, as a parametric surface. \documentclass[border=10pt]{standalone} \usepackage[inline]{asymptote} \begin{document} \begin{asy}[width=\the\linewidth,inline=true] settings.outformat=”pdf”; settings.render=0; settings.prc=false; import graph3; size(200,IgnoreAspect); size3(200,IgnoreAspect); currentprojection=orthographic(camera=(1.5,0.3,2),up=Z,target=(0.5,0,0),zoom=0.8); real r=2, w=1; real x(real u, real v){return (r+v/2*cos(3pi*u))*cos(2pi*u);}; real y(real u, real v){return (r+v/2*cos(3pi*u))*sin(2pi*u);}; real z(real u, real v){return (v/2*sin(3pi*u));};… Continue Reading →
\documentclass[border=10pt]{standalone} \usepackage{asymptote} \begin{document} \begin{asy}[width=\the\linewidth,inline=true] settings.outformat=”pdf”; settings.render=0; settings.prc=false; import graph3; import tube; size(200,0); currentlight.background=paleyellow+opacity(0.0); currentprojection=orthographic(camera=(-40,9,70), up=Z); real x(real t){return sin(t)+2sin(2t);} real y(real t){return cos(t)-2cos(2t);} real z(real t){return -sin(3t);} guide3 g=graph(x,y,z, 0, 2pi,operator..); draw(tube(g,circle((0,0),0.618)),white); \end{asy} \end{document} Source: TeX.SE Author: g.kov (License) See… Continue Reading →
\documentclass[border=10pt]{standalone} \usepackage{asymptote} \begin{document} \begin{asy}[width=\the\linewidth,inline=true] settings.outformat=”pdf”; settings.render=0; settings.prc=false; import graph3; import tube; size(200,0); currentlight.background=paleyellow+opacity(0.0); currentprojection=orthographic(camera=(-10,49,-58),up=(0.92,0.36,0.14)); real x(real t){return sin(2pi*t)+2sin(2*2pi*t);} real y(real t){return cos(2pi*t)-2cos(2*2pi*t);} real z(real t){return -sin(3*2pi*t);} guide3 g=graph(x,y,z, 0, 1,operator..); pair[][] p={ {(-40, 20),( -56.8421, 23.4210),( -78.9473, 28.6842),(-90, 20)}, {(-90,… Continue Reading →
The following image illustrates the blowup of a plane at a point–an important construction in algebraic geometry. \documentclass[border=10pt]{standalone} \usepackage[inline]{asymptote} \begin{document} \begin{asy}[width=\the\linewidth,inline=true] settings.outformat=”pdf”; settings.render=0; settings.prc=false; usepackage(“lmodern”); usepackage(“fontenc”,”T1″); usepackage(“amssymb”); // for the \mathbb command defaultpen(fontsize(10pt)); import graph3; size(400,400); currentprojection=orthographic(5,-10,4); real R=8; struct… Continue Reading →
\documentclass[border=10pt]{standalone} \usepackage{asymptote} \begin{document} \begin{asy}[width=\the\linewidth,inline=true] settings.outformat=”pdf”; settings.render=0; settings.prc=false; size(7cm); import fontsize; defaultpen(fontsize(9pt)); real wd=0.6bp; pen dotPen=deepblue+wd; pen dotFill=dotPen; pen dotPenB=blue+wd; pen dotPenC=red+wd; pen linePen=deepblue+wd; pen fillPen=lightgreen+opacity(0.5); pen thinLinePen=black+wd/2; guide[] g; g=texpath(“$\Omega$”); filldraw(g,fillPen,linePen); pair a,b,c,d; pair labdir; int pointNo=0; for(int i=0;i<g.length;++i){ for(int… Continue Reading →
\documentclass[margin=10pt,convert]{standalone} \usepackage{asymptote} \begin{document} \begin{asydef} // Global Asymptote definitions real linkLen=1, linkWidth=2pt; real rl=2+linkLen; // distance between beads guide link=(1,0)–(1+linkLen,0); // a link pen beadColor=orange; pen linkColor=beadColor; void bead(transform t){ draw(t*link,linkColor+linkWidth); radialshade(t*unitcircle, beadColor,shift(t)*(-0.4,0.3),0.01 ,black,shift(t)*(-0.4,0.3),1.5); } pair operator>(pair pos=(0,0), real phi){ transform… Continue Reading →
% chain.tex : % \begin{filecontents*}{chainofrings.asy} struct chainOfRings{ int n; // number of rings real w; pair origin; pen[] clrA={deepgreen,deepblue}; pen[] clrB={white,lightyellow,palered}; guide qring; real Rscaled(int); real rscaled(int); real eps; void drawHalf(int i,real Rt,real rt, pair p,real phi){ qring=rotate(phi)*(arc((0,0),Rt,-eps,90+eps)–reverse(arc((0,0),rt,-eps,90+eps))–cycle); radialshade(shift(p)*qring ,clrA[i%clrA.length],… Continue Reading →
\documentclass{article} \usepackage[inline]{asymptote} \usepackage{lmodern} \begin{document} \begin{asy} size(300,200,IgnoreAspect); import graph; real F(real t){return 4/sqrt(1+t^4);} real f(real x){return simpson(F,x,2x);} pen axPen=darkblue; pen fPen=red+1bp; draw(graph(f,-7,7,n=200),fPen); string noZero(real x) {return (x==0)?””:string(x);} defaultpen(fontsize(10pt)); xaxis(axPen,LeftTicks(noZero,Step=2)); yaxis(axPen,RightTicks(noZero,Step=0.5)); label(“$f:x\mapsto \displaystyle\int_x^{2x}” +”\frac{4}{\sqrt{1+t^4}}\, \textrm{d}t$” ,(1.7,f(1.7)),NE); \end{asy} \end{document} Source: TeX.SE Author: g.kov… Continue Reading →
\documentclass[border=10pt]{standalone} \usepackage{textgreek} \usepackage[inline]{asymptote} \usepackage{lmodern} \begin{document} \begin{asy} size(200); import graph; pair[] botP={(0,0.09),(0.252,0.196),(0.383,0.429),(0.479,0.588), (0.574,0.668),(0.733,0.726),(0.883,0.747),(1,0.747),}; pair[] topP={(0,0.341),(0.252,0.451),(0.383,0.677),(0.479,0.841), (0.574,0.92),(0.733,0.977),(0.883,0.993),(1,1),}; pair[] midP=0.5*(topP+botP); guide gtop=graph(topP,operator..); guide gbot=graph(botP,operator..); guide gmid=graph(midP,operator..); real f(real x){ real t=times(gmid,x)[0]; return point(gmid,t).y; }; real s(real x){ real tt=times(gtop,x)[0]; real tb=times(gbot,x)[0]; return point(gtop,tt).y-point(gbot,tb).y;… Continue Reading →
\documentclass[border=10pt]{standalone} \usepackage{asymptote} \begin{document} \begin{asy}[width=\the\linewidth,inline=true] settings.outformat=”pdf”; settings.render=0; settings.prc=false; import three; import solids; unitsize(1cm); currentprojection = orthographic(5,4,2); path3 x = (-1,0,0)–(4.5,0,0); draw(x,EndArrow3); label(“$x$”,(4.7,0,0)); path3 y = (0,-1,0)–(0,4.5,0); draw(y,EndArrow3); label(“$y$”,(0,4.7,0)); path3 z = (0,0,-1)–(0,0,4.5); draw(z,EndArrow3); label(“$z$”,(0,0,4.7)); label(“$O$”,(0,-0.3,-0.5)); path3 a = arc(O,3,0,0,90,0); draw(a); revolution… Continue Reading →
\documentclass[border=10pt]{standalone} \usepackage{asymptote} \begin{document} \begin{asy}[inline=true] import graph3; real w=9cm, h=1.618w; size(w,h); currentprojection=orthographic(camera=(-13,-8.6,59),up=Z,target=(0.5,0.5,3),zoom=1); import fontsize; defaultpen(fontsize(9pt)); texpreamble(“\usepackage{siunitx}\usepackage{lmodern}”); pen linePen=darkblue+0.9bp; pen grayPen=gray(0.3)+0.8bp; pen dashPen=gray(0.3)+0.8bp+linetype(new real[] {5,5}); pen patchFillPen=paleblue; pen planeFillPen=deepgreen+opacity(0.3); triple[][] p={ // Bicubic Bezier patch control points {(1 ,0.3,0),(1 ,0.5,-1),(1 ,0.6,1),(1 ,1,0),},… Continue Reading →
\documentclass[border=10pt]{standalone} \usepackage[inline]{asymptote} \begin{document} \begin{asy} settings.render = 0; settings.prc = false; import graph3; real unit = 0.1cm; unitsize(unit); defaultpen(fontsize(10pt)); triple eyeDirection = dir((-2,-2,0.7)); currentprojection = orthographic(eyeDirection); triple translateDirection = dir(cross(Z, eyeDirection)); void drawBehind(path3 thepath, pen pen=currentpen, real backOpacity = 1.0, real… Continue Reading →
\documentclass[border=10pt]{standalone} \usepackage{asymptote} \begin{document} \begin{asy}[width=\the\linewidth,inline=true] unitsize(1cm); path a = (1,2.4)–(4,0.6)..(4.5,1)..(4.1,1.9)..(3.9,2)..cycle; draw(a); fill(a,cyan); path b = (0,3)–(5,0); draw(b,linewidth(2)); path c = shift(4,0.6)*scale(0.6)*unitcircle; draw(c,red+dashed); path d = (5,1.2)–(6,1.8); draw(d,EndArrow); path e = shift(8,3)*scale(2)*unitcircle; draw(e,red+dashed); path f = (9.4,1.6)–(6.1,3.58); draw(f,linewidth(2)); path g = (8,2.44)..(8.8,3.2)..(8.6,3.8)..(8.4,4.1);… Continue Reading →
\documentclass[border=10pt]{standalone} \usepackage{lmodern} \usepackage{upgreek} \usepackage[inline]{asymptote} \begin{document} \begin{asy}[width=\the\linewidth,inline=true] settings.outformat=”pdf”; settings.render=0; settings.prc=false; import three; import graph3; import grid3; currentprojection=obliqueX; //Draw Axes pen thickblack = black+0.75; real axislength = 1.0; draw(L=Label(“$x$”, position=Relative(1.1), align=SW), O–axislength*X,thickblack, Arrow3); draw(L=Label(“$y$”, position=Relative(1.1), align=E), O–axislength*Y,thickblack, Arrow3); draw(L=Label(“$z$”, position=Relative(1.1), align=N), O–axislength*Z,thickblack,… Continue Reading →
\documentclass[border=10pt]{standalone} \usepackage{asymptote} \begin{document} \begin{asy}[width=\the\linewidth,inline=true] settings.outformat=”pdf”; settings.render=0; settings.prc=false; size(300); import solids; currentprojection=orthographic ( camera=(8,5,4), up=(0,0,1), target=(2,2,2), zoom=0.5 ); // save predefined 2D orientation vectors pair NN=N; pair SS=S; pair EE=E; pair WW=W; //%points on cube triple A = (0,0,0); triple B… Continue Reading →
\documentclass[border=10pt]{standalone} \usepackage{lmodern} \usepackage{upgreek} \usepackage[inline]{asymptote} \begin{document} \begin{asy}[width=\the\linewidth,inline=true] import graph; import roundedpath; import math; //texpreamble(“\usepackage{upgreek}”); defaultpen(fontsize(10pt)); real sc=2; unitsize(sc*1bp); // 1. bounding ellipse guide ell=(150,60)..(75,120)..(3.4,60)..(75,0)..cycle; // 2. day pen penA=rgb(0.773,0.831,0.882); pen penB=rgb(0.09,0.09,0.09); pair a=(70,60); pair b=(100,60); fill(box((0,0),(90,120)),penA); axialshade(box((0,0),(100,120)),penA,a, extenda=false,penB,b, extendb=false); // night… Continue Reading →
© 2025 TeX.social